Tag Archives: screw press machine

China manufacturer Screw Hot Press Sesame Oil Mill Peanut Screw Worm Oil Press Machine with Best Sales

Product Description

Screw hot press sesame oil mill peanut screw worm oil press machine

Description of 6yl-130 oil press machine:

The 6YL cooking oil press machine is an improved model based on the advantages of 6YL-120, it has less dregs ,high output rate. This 6YL cooking oil press machine can press all kinds of oil materials .It suitable for medium-small scale oil factory and private user, as well as for the pre-pressing of extraction oil factory .

Production details

Working structure:

Working principle:

When the oil press is running, the processed material embryo enters the squeezing chamber from the hopper. The helix of the squeezed screw is pushed in and squeezed. The material embryo is carried out in the pressing chamber of the oil press. Under the condition of high pressure, there is a great friction resistance between the material embryo and the squeezing and squeezing chamber. The heat caused by the heat caused the thermal denaturation of the protein in the embryo, destroyed the colloid, increased the plasticity, and also reduced the viscosity of the oil and thus precipitated oil easily. The oil production rate of the oil press is improved.

Applications:

Although 6YL-130 Screw oil press machine is small in size, it boasts superior oil making capacity.It can be used for various materials such as Peanuts, Rape seeds, Sesame seeds, Soybeans, cottonseeds, Tea seeds, Tung Tree seeds, Sunflower seeds, Palm kernel, Coconut meat, Corn germ, Rice bran, Almonds, Black cumin, Cacao beans, Coffee beans, Hazelnuts, seed, Jatropha, Jojoba, Linseed, Mustard seeds, Black seeds, Palm nuts, Poppy seeds, Pumpkin seeds, Shea nuts, Walnuts,etc.

Technical parameters:

Model

Capacity

Power

Electric machinery

Packing size(mm)

Gross and

net weight (kg)

6YL-130

oil press machine

300-400Kg/h

15KW

380V/50HZ/Triple phase

2280*700*780

780/750

1. Packing 
Standard export wooden case,1 set machine/ wooden case.
2.Delivery date
Usually, out delivery date is 7-15days,according to different machine and customer’s requirement.
3. Dispatch  method
By sea,by air ,by express ,according to customer’s requirement.

RFQ:
1.What’s the warranty of the machine?
12 months free guarantee and life long standard paid service.
2.What is the raw material of your machinery?
Stainless steel or carbon steel.
3.When can I get the price?
Within 24 hours, if urgent ,please contact us directly.
4.How to ask the quotation?
Please inform us your oilseeds and your target capacity per day,then we will send our advices with equipment list to you at once.
5.Can we ask the oil press for different types of oil ?
Yes you can! But we recommend no more than 3 kinds of oils.
6.How large land to build the oil plant?
The land area required usually depends on the capacity of your plant. We can calculate the area needed and give you the plant designs.
7.How long will it take to get my products?
Generally, it depends on your capacity. If you just need single machine, it just needs 7-15 days. If you need the complete production line, we should negotiate the time.
8.Do you install the production line and train our stuffs for free?
Yes we do. We’ll send professional installation engineers to help you install the equipment and train your workers freely.

 

Screw Shaft Features Explained

When choosing the screw shaft for your application, you should consider the features of the screws: threads, lead, pitch, helix angle, and more. You may be wondering what these features mean and how they affect the screw’s performance. This article explains the differences between these factors. The following are the features that affect the performance of screws and their properties. You can use these to make an informed decision and purchase the right screw. You can learn more about these features by reading the following articles.

Threads

The major diameter of a screw thread is the larger of the 2 extreme diameters. The major diameter of a screw is also known as the outside diameter. This dimension can’t be directly measured, but can be determined by measuring the distance between adjacent sides of the thread. In addition, the mean area of a screw thread is known as the pitch. The diameter of the thread and pitch line are directly proportional to the overall size of the screw.
The threads are classified by the diameter and pitch. The major diameter of a screw shaft has the largest number of threads; the smaller diameter is called the minor diameter. The thread angle, also known as the helix angle, is measured perpendicular to the axis of the screw. The major diameter is the largest part of the screw; the minor diameter is the lower end of the screw. The thread angle is the half distance between the major and minor diameters. The minor diameter is the outer surface of the screw, while the top surface corresponds to the major diameter.
The pitch is measured at the crest of a thread. In other words, a 16-pitch thread has a diameter of 1 sixteenth of the screw shaft’s diameter. The actual diameter is 0.03125 inches. Moreover, a large number of manufacturers use this measurement to determine the thread pitch. The pitch diameter is a critical factor in successful mating of male and female threads. So, when determining the pitch diameter, you need to check the thread pitch plate of a screw.
screwshaft

Lead

In screw shaft applications, a solid, corrosion-resistant material is an important requirement. Lead screws are a robust choice, which ensure shaft direction accuracy. This material is widely used in lathes and measuring instruments. They have black oxide coatings and are suited for environments where rusting is not acceptable. These screws are also relatively inexpensive. Here are some advantages of lead screws. They are highly durable, cost-effective, and offer high reliability.
A lead screw system may have multiple starts, or threads that run parallel to each other. The lead is the distance the nut travels along the shaft during a single revolution. The smaller the lead, the tighter the thread. The lead can also be expressed as the pitch, which is the distance between adjacent thread crests or troughs. A lead screw has a smaller pitch than a nut, and the smaller the lead, the greater its linear speed.
When choosing lead screws, the critical speed is the maximum number of revolutions per minute. This is determined by the minor diameter of the shaft and its length. The critical speed should never be exceeded or the lead will become distorted or cracked. The recommended operational speed is around 80 percent of the evaluated critical speed. Moreover, the lead screw must be properly aligned to avoid excessive vibrations. In addition, the screw pitch must be within the design tolerance of the shaft.

Pitch

The pitch of a screw shaft can be viewed as the distance between the crest of a thread and the surface where the threads meet. In mathematics, the pitch is equivalent to the length of 1 wavelength. The pitch of a screw shaft also relates to the diameter of the threads. In the following, the pitch of a screw is explained. It is important to note that the pitch of a screw is not a metric measurement. In the following, we will define the 2 terms and discuss how they relate to 1 another.
A screw’s pitch is not the same in all countries. The United Kingdom, Canada, and the United States have standardized screw threads according to the UN system. Therefore, there is a need to specify the pitch of a screw shaft when a screw is being manufactured. The standardization of pitch and diameter has also reduced the cost of screw manufacturing. Nevertheless, screw threads are still expensive. The United Kingdom, Canada, and the United States have introduced a system for the calculation of screw pitch.
The pitch of a lead screw is the same as that of a lead screw. The diameter is 0.25 inches and the circumference is 0.79 inches. When calculating the mechanical advantage of a screw, divide the diameter by its pitch. The larger the pitch, the more threads the screw has, increasing its critical speed and stiffness. The pitch of a screw shaft is also proportional to the number of starts in the shaft.

Helix angle

The helix angle of a screw shaft is the angle formed between the circumference of the cylinder and its helix. Both of these angles must be equal to 90 degrees. The larger the lead angle, the smaller the helix angle. Some reference materials refer to angle B as the helix angle. However, the actual angle is derived from calculating the screw geometry. Read on for more information. Listed below are some of the differences between helix angles and lead angles.
High helix screws have a long lead. This length reduces the number of effective turns of the screw. Because of this, fine pitch screws are usually used for small movements. A typical example is a 16-mm x 5-inch screw. Another example of a fine pitch screw is a 12x2mm screw. It is used for small moves. This type of screw has a lower lead angle than a high-helix screw.
A screw’s helix angle refers to the relative angle of the flight of the helix to the plane of the screw axis. While screw helix angles are not often altered from the standard square pitch, they can have an effect on processing. Changing the helix angle is more common in two-stage screws, special mixing screws, and metering screws. When a screw is designed for this function, it should be able to handle the materials it is made of.
screwshaft

Size

The diameter of a screw is its diameter, measured from the head to the shaft. Screw diameters are standardized by the American Society of Mechanical Engineers. The diameters of screws range from 3/50 inches to 16 inches, and more recently, fractions of an inch have been added. However, shaft diameters may vary depending on the job, so it is important to know the right size for the job. The size chart below shows the common sizes for screws.
Screws are generally referred to by their gauge, which is the major diameter. Screws with a major diameter less than a quarter of an inch are usually labeled as #0 to #14 and larger screws are labeled as sizes in fractions of an inch. There are also decimal equivalents of each screw size. These measurements will help you choose the correct size for your project. The screws with the smaller diameters were not tested.
In the previous section, we described the different shaft sizes and their specifications. These screw sizes are usually indicated by fractions of an inch, followed by a number of threads per inch. For example, a ten-inch screw has a shaft size of 2” with a thread pitch of 1/4″, and it has a diameter of 2 inches. This screw is welded to a two-inch Sch. 40 pipe. Alternatively, it can be welded to a 9-inch O.A.L. pipe.
screwshaft

Shape

Screws come in a wide variety of sizes and shapes, from the size of a quarter to the diameter of a U.S. quarter. Screws’ main function is to hold objects together and to translate torque into linear force. The shape of a screw shaft, if it is round, is the primary characteristic used to define its use. The following chart shows how the screw shaft differs from a quarter:
The shape of a screw shaft is determined by 2 features: its major diameter, or distance from the outer edge of the thread on 1 side to the inner smooth surface of the shaft. These are generally 2 to 16 millimeters in diameter. Screw shafts can have either a fully threaded shank or a half-threaded shank, with the latter providing better stability. Regardless of whether the screw shaft is round or domed, it is important to understand the different characteristics of a screw before attempting to install it into a project.
The screw shaft’s diameter is also important to its application. The ball circle diameter refers to the distance between the center of 2 opposite balls in contact with the grooves. The root diameter, on the other hand, refers to the distance between the bottommost grooves of the screw shaft. These are the 2 main measurements that define the screw’s overall size. Pitch and nominal diameter are important measurements for a screw’s performance in a particular application.

Lubrication

In most cases, lubrication of a screw shaft is accomplished with grease. Grease is made up of mineral or synthetic oil, thickening agent, and additives. The thickening agent can be a variety of different substances, including lithium, bentonite, aluminum, and barium complexes. A common classification for lubricating grease is NLGI Grade. While this may not be necessary when specifying the type of grease to use for a particular application, it is a useful qualitative measure.
When selecting a lubricant for a screw shaft, the operating temperature and the speed of the shaft determine the type of oil to use. Too much oil can result in heat buildup, while too little can lead to excessive wear and friction. The proper lubrication of a screw shaft directly affects the temperature rise of a ball screw, and the life of the assembly. To ensure the proper lubrication, follow the guidelines below.
Ideally, a low lubrication level is appropriate for medium-sized feed stuff factories. High lubrication level is appropriate for larger feed stuff factories. However, in low-speed applications, the lubrication level should be sufficiently high to ensure that the screws run freely. This is the only way to reduce friction and ensure the longest life possible. Lubrication of screw shafts is an important consideration for any screw.

China manufacturer Screw Hot Press Sesame Oil Mill Peanut Screw Worm Oil Press Machine   with Best SalesChina manufacturer Screw Hot Press Sesame Oil Mill Peanut Screw Worm Oil Press Machine   with Best Sales

China factory Sea Buckthorn Worm Screw Oil Press Corn Oil Extraction Pumpkin Seeds Dehulling Machine near me factory

Product Description

sea buckthorn worm screw oil press corn oil extraction pumpkin seeds dehulling machine

The flow chart process of palm oil processing machine
FFB(Palm fruit bunches)–Sterilizing–Thershing–Digesting–Pressing–Clarifying–Drying–Filtering–Crude palm oil

Production Process

1. Receipt of fruit : Automatic metering and unloading of materials, increase the production efficiency. The fruit cage pushes and pulls along the fixed track and operates mechanized, saving time and effort.

2.Sterilization : Sterilization can be divided into 2 types, 1 is a horizontal sterilizer sterilizing tank and the other is a vertical sterilizer sterilizing tank. In comparison, because the horizontal sterilization takes up a large area and the steam consumption is large, it is a relatively traditional sterilization method. The vertical sterilization is based on the improvement of horizontal sterilization. It consumes less, saves resources, and is used more and more widely.

3. Fruit removal: The purpose of threshing is to separate the oil palm fruit from the fruit string by strong rotational vibration. The fruit removal equipment is a drum type fruit remover. The separated oil palm fruit is discharged into the press section. The empty fruit string is discharged from the other end of the drum to the yard or transported to or from the factory area for recycling of palm orchard cover, or on-site incineration as a fertilizer applied to the farmland. The adjustment mechanism of the fruit remover can adjust the delivery speed of the ear.

4. Crushing: The palm fruit masher is suitable for the smashing of cooked palm granules, so that the heating and humidifying mashing effect before the squeezing is better, the squeezing oil yield is effectively increased, and the squeezing process is reduced in the subsequent squeezing section. Walking oil.

5. Squeeze: With advanced continuous double spiral brown fruit oil press, hydraulic automatic control system that can adjust the pressing pressure, high oil extraction efficiency, low residue of cake residue and low breakage rate of palm kernel.

Double Screw Palm Oil Extraction Machine:

Model Input Capacity
(T FFB/h)
Power of motor spindle(kw)
YZYZ-1.0 1T/H 5.5kw
YZYZ-2.0 2T/H 7.5kw
YZYZ-3.0 3T/H 11kw
YZYZ-5.0 5T/H 15kw

6. Clarification: Separation of major impurities (such as silt, fiber, etc.) in the oil by means of natural sedimentation

7. Vacuum dehydration equipment: As the fresh palm fruit contains moisture, and it also enters a lot of moisture during the cooking and fermenting stage, so when the palm oil squeezed out , it contains a lot of water. If it is not dehydrated promptly, the palm oil will quickly deteriorate and spoil. and the palm oil dehydration equipment uses vacuum heating to quickly dehydrate palm oil.

8. Fine filtration: The use of bag-type fine filter can accurately ensure the filtration accuracy, and can quickly and easily replace the filter bag, and the filter almost has no material consumption, which reduces the operating cost and suitable for fine filtration of palm oil.

Wet Type Complete of palm fruit oil expeller

 Palm fruit reception station of palm oil processing machine
Palm fruit reception station is used for loading the Fresh fruit bunch (FFB) to the palm fruit cage. Adopt hydraulic control system. as our experience, some palm oil mill plant use concrete structure, but it’s not good for cleaning. Now we adopt steel material, fence structure. Some impurity will drop down to a conveyor, impurity will conveyed to outside. Easy for cleaning.

Palm fruit sterilizing station of palm oil processing machine
FFB transported by scraper conveyer fall into sterilizing tank, make FFB soft,get more oil yield. sterilizing time 90~120mins, temperature 130~145ºC.Sterilizer can be design as owner’s requirement.horizontal sterilizer or vertical sterilizer for our customer.

Palm fruit threshing station of palm oil processing machine
Palm fruit thresher in palm oil mill equipment machinery is used for separate empty fruit bunch and palm fruit.According the palm oil mill capacity we can design the thresher capacity, usually we have a spare one, in case 1 of them not work. Empty fruit bunch from palm fruit thresher will be conveyed to outside, can be used as stertilizer in palm fruit plantation. Sterilized palm fruit will be convey to next station.

Palm fruit digesting & pressing station of palm oil processing machine
Pressing station in palm oil mill equipment machinery is include digestor and oil presser.
Sterilized palm fruit from thresher conveyed to digestor.There are blades in digestor, blades will be rolling by motor which is on the top of digestor. Palm fruit peel can be crushed by blades, besides we will fill the steam in digestor for heating. Palm fruit pulp cell can be destroyed under the high temperature condition, after that we can get higher oil yield.

Clarification station of palm oil processing machine

Machine-pressed crude oil first diluted with water washing, through settlement and filtration, the fiber material removed from the oil, and then carry out continuous settlement, the whole

divided into 2 parts: oil and sediment.

Company Information

ZheJiang Double Elephants Machinery I/E CO.,LTD

A professional collection of research ,design, production and sales of Oil making machine,animal food machine ,extruder machine for pet and snacks,and many other kind of food machine.

Our company has a big manufacturing factory with 40 years rich experiences based on one original machinery started by our government machinery department, we adopts advanced production technology, sophisticated equipment and have won abundant strength after many years of development accumulation. 

Our puffed machinery has won the 1999 best national evaluation,and passed the ISO 9001 International Quality Authentication in 2000.More proudly, we have achieved the CE certificate to convenient more European customers.

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China factory Sea Buckthorn Worm Screw Oil Press Corn Oil Extraction Pumpkin Seeds Dehulling Machine   near me factory China factory Sea Buckthorn Worm Screw Oil Press Corn Oil Extraction Pumpkin Seeds Dehulling Machine   near me factory

China Professional Worm Screw Coconut Cold Oil Press Corn Oil Extraction Machine Cotton Seed wholesaler

Product Description

worm screw coconut cold oil press corn oil extraction machine cotton seed

Product Description

This series of coconut oil processing machine are an excellent model of coconut oil processing machine through numerous experiments and long time usage by all of the world clients.The coconut oil processing machine has advantage of high efficiency, low consumption, simple operating, stable function, easy to maintain,high productivity and high oil output ratio.

 

Type: 6YL-160 oil press

Capacity:15-16ton/24hrs for oil seeds

Main power: 380V/50HZ/30kw

Dimension: 2050*820*1400mm

Weight: 1400kg

Model

Capacity

Power(kw)

Size

Weight(kg)

6YL-68 oil press machine

50kg/h

5.5

920*480*760

140

6YL-80 oil press machine

100kg/h

5.5

1320*540*1571

330

6YL-95 oil press machine

150-200kg/h

7.5

1940*700*780

550

6YL-100 oil press machine

200kg/h

7.5

1700*600*1130

480

6YL-120 oil press machine

250kg/h

11

1650*630*1260

680

6YL-160/zx130 oil press machine

10-12T/24H

15

2050*820*1400

820

6YL-180/ZX160 oil press machine

13-18T/24H

18.5

2571*680*1460

980

The main processing oil crops:coconut,soybean,rapeseeds,copra,cottonseeds,peanut,sunflower,

tea seed,gendarmerie seeds,rapeseed/canola,peanut kernel,olive,walnut kernel,maize germ,rice bran,teaseed,sallow thron seed,chinaberry seed,rubber seed,china pepper seed,tomato seed,

water CZPT seed,grape seed,flax seed,Oenothera seed,pepper seed,castor seed,orange seed,

cocoa bean,,coffee bean,,perilla,almond kernel,peach seed kernel,hemp,avocado,sunflower,

sacha inchi,hazelnut,Xanthoceras,Xihu (West Lake) Dis.nga Seeds,Peony Seed,Shea Butter,Camellia oil,Walnut oil,Safflower seed,perilla seeds,Hemp seed,White sesame seeds,AlmondsCastor bean,linseed,

sea-buckthorn,Marula,ect.

Characteristics:

1) High oil yield(the rate of the outlet oil>93%), residual oil of the cake is less, crude oil is clearer;

2) The machine’s material is better, the accessories are wear resistance and long service life after quenching conditioning treatment;

3) The gear-box’s gears adopt the special helical & couping gear’s design, with the lower load, less consumption and low noise.

Features for Oil Press

The others’ characteristic is the simple structure, easy operation, energy saving, low noise, high rate of oil, adaptability and continuous operations.


Our Services

Packaging & Shipping


 

Company Information

ZheJiang Double Elephants Machinery I/E CO.,LTD

A professional collection of research ,design, production and sales of Oil making machine,animal food machine ,extruder machine for pet and snacks,and many other kind of food machine.

Our company has a big manufacturing factory with 40 years rich experiences based on one original machinery started by our government machinery department, we adopts advanced production technology, sophisticated equipment and have won abundant strength after many years of development accumulation. 

Our puffed machinery has won the 1999 best national evaluation,and passed the ISO 9001 International Quality Authentication in 2000.More proudly, we have achieved the CE certificate to convenient more European customers.

Customer Vist


CE&ISO Certification

 

Types of Screw Shafts

Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which 1 is the best choice for your project? Here are some tips to choose the right screw:

Machined screw shaft

The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
screwshaft

Acme screw

An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
screwshaft

Lead screw

A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, 1 should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.

Fully threaded screw

A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are 2 major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically 1 millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect 2 elements.
screwshaft

Ball screw

The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.

China Professional Worm Screw Coconut Cold Oil Press Corn Oil Extraction Machine Cotton Seed   wholesaler China Professional Worm Screw Coconut Cold Oil Press Corn Oil Extraction Machine Cotton Seed   wholesaler