China Good quality DIN/ANSI/BS/JIS Carbon-Steel/Stainless-Steel 4.8/8.8/10.9 Chorme Slotted Head Screws for Machinery/Industry Screws

Product Description

                                                           Triangle head Shrink bar Lead screw
Screws are generally called wood screws; is the tip of the kind of tip, pitch larger, generally used to tighten wood parts, plastic parts. Mechanical screws, is the front of the kind of screws, the pitch is small, uniform, generally used to fasten the metal, machine parts.Our products has high quality,and long life time.Our  company has passed ISO9001, ISO9001 (CQC) certification, product quality assurance.
Screw application range
1> stainless steel plate, metal plate, galvanized steel plate, engineering installation.
2> metal curtain wall metal light compartment and other indoor and outdoor installation. 
3> General angle steel, channel steel, iron plate and other metal materials combined installation. 
4> car trunk, container box, shipbuilding, refrigeration equipment and other assembly works.
5> automobile engine, heavy machinery, garden machinery, petrochemical.
6> aerospace, energy, machinery, chemical, military, metallurgy, mold, hydraulic.
7> motorcycles, sports equipment, cars and many other industries.
8> electronics, electrical appliances, motors, lighting, communications, home appliances, furniture.

Brand  name HangZhou Model CC-102 Type Machine screw
Head   Type Cylindrical head Groove type Word Screw diametre 8mm
Screw Length 105mm Application Hand twist Screw size M5
Thread tolerance 6G Nominal length 110mm Surface Chrome

Shipping  and  packaging
Via CHINAMFG shipping
North America, South America about 40 working days
Eastern Europe about 30-40 working days
Southeast Asia about20-30 working days
Africa about 35-45 working days
India, Pakistan about 40 working days
Korea, Japan about 40 working days

Air transport
Other places around 1-3 business days
Packaging: boxes, cartons or plastic bags, or according to customer needs.

Sample service 
If  you need  sample,you need pay  the  freight.

Customer Service
· 1. No question refund within 3 days. 
· 2. Well trained and experienced staffs at your service. 
· 3. Short lead time. 
· 4. International standard matched
· 5. Non-standard / standard / OEM / ODM / customized service provided. 
· 6. Small Quantity available. 
· 7. Designed in accordance with customers’ request. 
· 8. Packed and delivered by customers’ requirement.
Any more questions or demands, please feel free to contact us!

Our factory

GB/T 65-2000                   
GB/T 67-2000
GB/T 68-2000
GB/T 69-2000
GB/T 70.1-200
 GB/T 70.2-2000
 GB/T 70.3-2000
 GB  71-85
 GB-72-88
 GB-73-85
 GB-74-85
 GB-75-85
 GB/T 77-2000
 GB/T 78-2000
 GB/T 79-2000
 GB/T 80-2000
 GB 83-88
 GB 84-88
 GB 85-88
 GB 86-88
 GB/T 818-2000
 GB 838-88
 GB 839-88
 GB 840-88
 GB 946-88
 GB 947-88
 GB 948-88
 GB 949-88  
 GB 2672-86
 GB 2673-86              
 GB 2674-86
 GB 5281-86    
GB/T 820-2000
GB/T 821-88
 GB/T 822-2000
 GB 823-88
 GB 825-88
 GB 828-88
 GB 829-88
 GB 830-88
 GB 831-88
 GB 832-88
 GB 833-88
 GB 834-88
 GB 835-88
 GB 836-88
GB 13-88
GB 14-1998
GB 15-88
GB 29.2-88
GB 35-88
GB 37-88
GB /T794-93
GB 798-88
GB 799-88
GB 800-88
DIN 125-A   GB 971-85
DIN 125-B   GB97.2-85
DIN127-A    GB7244
DIN 127-B   GB93-87
DIN 912      GB70-85
DIN933      GB-5783-86
DIN931      GB5782-86
DIN934      GB6170-86

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Stainless Steel
Type: Fillster
Groove: Word
Connection: Hinged Bolts
Head Style: Round
Standard: DIN, GB, ANSI, JIS
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

worm screw

What maintenance is required for worm screw gear systems?

Maintaining worm screw gear systems is essential to ensure their smooth operation, longevity, and optimal performance. Here are the key maintenance tasks typically required for worm screw gear systems:

  1. Lubrication: Proper lubrication is crucial for reducing friction, wear, and heat generation in worm screw gear systems. Regularly monitor lubricant levels and follow the manufacturer’s recommendations for lubrication intervals and types of lubricants to use. Inspect lubricant quality and cleanliness, and replenish or replace the lubricant as needed. Pay attention to proper lubrication in both the worm screw and the worm wheel to ensure efficient torque transmission and minimize wear.
  2. Cleaning: Regularly clean the worm screw gear system to remove dirt, debris, and contaminants that can accumulate on the threads, teeth, and other contacting surfaces. Use appropriate cleaning methods and solvents recommended by the manufacturer. Ensure that the cleaning process does not damage the components or compromise the lubrication system.
  3. Inspection: Conduct routine inspections to identify any signs of wear, damage, or misalignment in the worm screw gear system. Check for excessive backlash, abnormal noise, vibration, or irregularities in operation. Inspect the teeth, threads, and other critical areas for signs of wear, pitting, or scoring. If any issues are detected, take appropriate measures to address them promptly, such as adjusting the backlash or replacing worn components.
  4. Alignment: Proper alignment is crucial for the optimal performance and longevity of worm screw gear systems. Periodically check and adjust the alignment of the worm screw and the worm wheel to ensure smooth and efficient meshing. Misalignment can result in increased friction, wear, and reduced performance. Follow the manufacturer’s guidelines for alignment procedures and use precision measurement tools as necessary.
  5. Load Distribution: Monitor the load distribution across the teeth of the worm wheel. Uneven load distribution can lead to premature wear and failure of the system. If necessary, adjust loads, redistribute the load by using multiple worm screws, or consider using additional supporting mechanisms to ensure uniform load distribution.
  6. Temperature Monitoring: Keep an eye on the operating temperature of the worm screw gear system. Excessive heat can indicate problems such as inadequate lubrication, overloading, or inefficiencies. Monitor temperature using appropriate sensors or thermal imaging techniques and take corrective actions if the temperature exceeds recommended limits.
  7. Periodic Overhaul: Depending on the application and usage conditions, consider scheduling periodic overhauls or maintenance intervals for the worm screw gear system. During these overhauls, disassemble the system, inspect components thoroughly, replace worn or damaged parts, reassemble with proper lubrication, and perform necessary adjustments. The frequency of overhauls will depend on factors such as operating conditions, loads, and manufacturer recommendations.
  8. Documentation: Maintain proper documentation of maintenance activities, including lubrication schedules, inspection records, repair or replacement history, and any troubleshooting performed. This documentation provides a valuable reference for future maintenance, helps identify recurring issues, and enables better tracking of the system’s performance over time.

It’s important to note that specific maintenance requirements may vary depending on the design, materials, operating conditions, and manufacturer recommendations for the worm screw gear system. Always refer to the manufacturer’s documentation and guidelines for the particular system being used, and consult with experts or maintenance professionals if needed.

worm screw

How do you troubleshoot problems in a worm screw gear system?

Troubleshooting problems in a worm screw gear system requires a systematic approach to identify and resolve issues effectively. Here are the steps involved in troubleshooting problems in a worm screw gear system:

  1. Identify the Symptoms: Start by identifying the specific symptoms or issues that indicate a problem in the worm screw gear system. This can include abnormal noise, reduced performance, increased backlash, erratic motion, or any other noticeable deviations from normal operation. Gather as much information as possible about the symptoms to help narrow down the potential causes.
  2. Inspect and Clean: Conduct a visual inspection of the worm screw gear system to check for any obvious signs of wear, damage, misalignment, or contamination. Inspect the threads of the worm screw and the teeth of the worm wheel for signs of pitting, scoring, or other surface irregularities. Clean the components if necessary to remove any debris or contaminants that may be affecting the system’s performance.
  3. Check Lubrication: Review the lubrication of the worm screw gear system. Ensure that the system is adequately lubricated with the recommended lubricant and that the lubricant is in good condition. Insufficient or degraded lubrication can result in increased friction, wear, and inefficiencies. Replenish or replace the lubricant as needed following the manufacturer’s guidelines.
  4. Inspect Alignment: Verify the alignment of the worm screw and the worm wheel. Misalignment can cause issues such as increased friction, wear, and reduced efficiency. Check for any signs of misalignment and make adjustments as necessary to ensure proper alignment of the components. This may involve repositioning or realigning the system or addressing any underlying factors contributing to the misalignment.
  5. Measure Backlash: Measure the amount of backlash present in the system. Excessive backlash can lead to reduced accuracy, loss of motion control, and diminished performance. Use appropriate measuring tools, such as dial indicators, to quantify the amount of backlash. If the backlash exceeds acceptable limits, consider adjusting the system to minimize or eliminate the excessive clearance between the threads and the teeth.
  6. Check Load and Overloading: Evaluate the loads applied to the worm screw gear system and compare them to the system’s design limits. Overloading the system can lead to accelerated wear, tooth breakage, or component deformation. If the loads exceed the system’s capacity, consider redistributing the load, upgrading the components, or redesigning the system to handle the required loads appropriately.
  7. Address Specific Issues: Based on the symptoms and findings from the inspection and measurements, address any specific issues identified in the worm screw gear system. This may involve repairing or replacing worn or damaged components, adjusting clearances, realigning the system, improving lubrication, or addressing any other factors contributing to the problems observed.
  8. Test and Monitor: After addressing the identified issues, test the worm screw gear system to verify that the problems have been resolved. Monitor the system’s performance during operation to ensure that the symptoms have been effectively mitigated. Pay attention to any new or recurring issues that may require further investigation or adjustments.

It is important to note that troubleshooting problems in a worm screw gear system may require expertise and experience. If you encounter complex or persistent issues that you are unable to resolve, it is recommended to seek assistance from qualified technicians or professionals with knowledge in mechanical power transmission systems.

worm screw

What are the typical applications of worm screws in machinery?

Worm screws, also known as worm gears or worm gear screws, have a wide range of applications in machinery where motion transmission and torque multiplication are required. Their unique characteristics make them suitable for various industries and applications. Here are some typical applications of worm screws in machinery:

  • Conveyor Systems: Worm screws are commonly used in conveyor systems to control the movement of materials. They provide precise speed reduction and torque multiplication, allowing for efficient transportation of goods in industries such as manufacturing, packaging, and logistics.
  • Lifting Mechanisms: Worm screws are extensively used in lifting mechanisms, such as screw jacks or worm gear lifts. They provide reliable and controlled vertical motion for lifting heavy loads in applications like automotive service garages, construction sites, and material handling equipment.
  • Winches and Hoists: Worm screws are employed in winches and hoists to provide high torque and controlled lifting or pulling operations. They are commonly used in applications such as cranes, marine equipment, elevators, and stage rigging.
  • Rotary Actuators: Worm screws are utilized in rotary actuators to convert the input rotary motion into a controlled rotary output motion. This makes them suitable for applications like valve actuators, positioning systems, and robotic joints.
  • Automotive Applications: Worm screws find use in automotive applications, particularly in steering systems. They are employed in steering gearboxes to convert the rotary motion from the steering wheel into the lateral motion required for steering the vehicle.
  • Machine Tools: Worm screws are used in machine tools, such as milling machines, lathes, and drill presses, to control various linear and rotary movements. They provide precise positioning and motion control for cutting, shaping, and drilling operations.
  • Printing and Packaging Machinery: Worm screws are employed in printing and packaging machinery to control the movement of printing heads, cutting blades, and packaging components. They ensure accurate and synchronized motion for high-quality printing and packaging processes.
  • Robotics: Worm screws are utilized in robotics for precise and controlled motion in robotic arms, grippers, and other robotic mechanisms. They enable accurate positioning and smooth motion control in industrial automation and robotic applications.

These are just a few examples of the typical applications of worm screws in machinery. Their ability to provide high gear reduction ratios, precise motion control, and self-locking characteristics make them suitable for a wide range of industries, including manufacturing, construction, automotive, robotics, and many others where efficient power transmission and controlled motion are essential.

China Good quality DIN/ANSI/BS/JIS Carbon-Steel/Stainless-Steel 4.8/8.8/10.9 Chorme Slotted Head Screws for Machinery/Industry Screws  China Good quality DIN/ANSI/BS/JIS Carbon-Steel/Stainless-Steel 4.8/8.8/10.9 Chorme Slotted Head Screws for Machinery/Industry Screws
editor by CX 2024-01-24