China best CHINAMFG Rolling Mechanical Ball Screw for Feeding Machine (BSD Series, Lead: 10mm, Shaft: 10mm)

Product Description

 BSD Series Stepped Cold Rolled Ball Screw (C5/Ct7)
 

Table of Shaft dia. and Lead combination for Rolled Ball Screw
  Lead (mm)  
0.5 1 1.5 2 2.5 3 4 5 6 8 10 12 15 20 30
Shaft dia (mm) 4   /   /                      
5             /                
6   /   /         /   /        
8   /   / /     /   / / /      
10       /   / / / /   / / / /  
12       /             /        
13                       / / /  
14       /     /                
15               /     /     /  
16                              

Accuracy Class & Axial Clearance
 
Accuracy grade of BSD series(standard stepped cold rolled ball screw) are based on C5 and Ct7(JIS B 1192-3). According to accuracy grade, Axial play 0.005(Preload :C5) and 0.02mm or less(Ct7).

Material & Surface Hardness
 
BSD series (Standard Stepped cold rolled ball screw) of screw shaft screw material S55C (induction hardening), nut material SCM415H (carburizing and hardening), the surface hardness of the ball screw part is HRC58 or higher.

Shaft End Shape
 
The shape of the shaft end of the BSD series (stepped cold rolled ball screw) has been standardized.

Application:

1. Medical industry
2.Lithium battery industry
3.Solar photovoltaic industry
4. Semi conductor Industry
5. General industry machinery
6. Machine tool
7. Parking system
8. High-speed rail and aviation transportation equipment
9. 3C industry etc

Technical Drawing

Specification List

 

FACTORY DETAILED PROCESSING PHOTOS
 

HIGH QUALITY CONTROL SYSTEM

FAQ

1. Why choose CHINAMFG China?

  Over the past 14 years, CHINAMFG has always insisted that “products and services” start from Japanese industry standards,taking ZheJiang standards as the bottom line, actively invest in the development of new transmission components and self-experiment and test. With the service tenet of “exceeding customer expectations”, establish a “trusted” partnership.

2. What is your main products ?

We are a leading manufacturer and distributor of linear motion components in China. Especially miniature size of Ball Screws and Linear Actuators and linear motion guideways.  Our brand “KGG” stands for ” Know-how,” ” Great Quality,” and ” Good value”  and our factory is located in the most advanced  city in China: ZheJiang  with the best equipment and sophisticated technology, completely strict quality control system. Our aim is to supply world leader class linear motion components but with most reasonable price in the world.

3. How to Custom-made (OEM/ODM)?

If you have a product drawing or a sample, please send to us, and we can custom-made the as your required. We will also provide our professional advices of the products to make the design to be more realized & maximize the performance.

4. When can I get the quotation?
 
 We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price,please call us or tell us in your email so that we will regard your inquiry priority.

5. How can I get a sample to check the quality?

 After confirmation of our quoted price, you can place the sample order. The sample will be started after you CHINAMFG back our detailed technical file. 

6. What’s your payment terms?

  Our payment terms is 30% deposit,balance 70% before shipment. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Precision: C5/C7
Screw Diameter: 10mm
Flange: With Flange
Nut Number: Single
Rows Number: 3-Row
Nut Type: Stepped Type
Customization:
Available

|

worm screw

What are the common issues or failures associated with worm screws?

Worm screws, like any mechanical component, can experience certain issues or failures over time. Understanding these common problems is important for proper maintenance and troubleshooting. Here are some common issues or failures associated with worm screws:

  1. Wear and Surface Damage: Due to the sliding contact between the threads of the worm screw and the teeth of the worm wheel, wear can occur over time. This wear can lead to surface damage, such as pitting, scoring, or galling. Excessive wear and surface damage can affect the performance and efficiency of the worm screw gear system, resulting in increased backlash, decreased torque transmission, and potential failure.
  2. Lubrication Problems: Inadequate or improper lubrication is a common cause of issues in worm screw systems. Insufficient lubrication can lead to increased friction, heat generation, and accelerated wear. On the other hand, over-lubrication can cause excessive drag and fluid churn, leading to inefficient power transmission. It is important to follow the manufacturer’s recommendations for lubrication intervals, types of lubricants, and proper lubrication techniques to ensure optimal performance and longevity of the worm screw system.
  3. Backlash and Inaccuracy: Backlash refers to the play or clearance between the threads of the worm screw and the teeth of the worm wheel. Excessive backlash can result in reduced accuracy, loss of motion control, and diminished overall system performance. Backlash can be caused by factors such as wear, misalignment, or improper assembly. Regular inspection and adjustment of backlash are necessary to maintain the desired precision and minimize the effects of backlash-related issues.
  4. Misalignment: Misalignment between the worm screw and the worm wheel can result in increased friction, wear, and inefficiencies. Misalignment can occur due to factors such as improper installation, component deformation, or external forces. It is essential to ensure proper alignment during installation and periodically check for misalignment during routine maintenance. Adjustments should be made as necessary to maintain optimal performance and prevent premature failure.
  5. Overloading: Subjecting the worm screw gear system to excessive loads beyond its design limits can lead to failure. Overloading can result in accelerated wear, tooth breakage, or component deformation. It is important to operate the system within the specified load limits and consider factors such as shock loads, dynamic loads, and variations in operating conditions. If higher loads are required, it may be necessary to select a worm screw system with a higher load capacity or redesign the system accordingly.
  6. Corrosion and Contamination: Corrosion and contamination can negatively impact the performance and lifespan of worm screw systems. Exposure to moisture, chemicals, or abrasive particles can lead to corrosion, rusting, or damage to the surfaces of the worm screw and worm wheel. Contamination can interfere with smooth operation and cause accelerated wear. Proper environmental protection, regular cleaning, and appropriate sealing measures can help mitigate the effects of corrosion and contamination.
  7. Insufficient Stiffness: Worm screws rely on proper support and stiffness to maintain accurate positioning and prevent deflection. Inadequate stiffness in the supporting structure or mounting arrangement can result in excessive deflection, misalignment, and decreased performance. It is crucial to ensure that the worm screw system is properly supported and mounted to maintain the required rigidity and stiffness for optimal operation.

It’s important to note that the specific issues or failures associated with worm screws can vary depending on factors such as the application, operating conditions, maintenance practices, and the quality of the components. Regular inspection, proper lubrication, alignment checks, load monitoring, and adherence to manufacturer guidelines are essential for minimizing the occurrence of these issues and ensuring the reliable and efficient operation of worm screw systems.

worm screw

How does the pitch of a worm screw affect its performance?

The pitch of a worm screw plays a crucial role in determining its performance characteristics and capabilities. The pitch refers to the axial distance between consecutive threads on the worm screw. Here’s how the pitch of a worm screw affects its performance:

  • Speed and Efficiency: The pitch of a worm screw directly influences the speed and efficiency of the worm gear system. A smaller pitch, which means a finer thread, results in a higher gear ratio and slower output speed. Conversely, a larger pitch, or coarser thread, leads to a lower gear ratio and faster output speed. This relationship between pitch and speed allows for speed reduction or multiplication in mechanical power transmission systems.
  • Load Capacity: The pitch of a worm screw also affects its load-carrying capacity. A finer pitch tends to distribute the load over more threads, resulting in a larger contact area between the worm screw and the worm wheel. This increased contact area improves load distribution and allows for higher load capacity. Coarser pitches, on the other hand, may have a reduced contact area, which can limit the load-carrying capability of the worm gear system.
  • Backlash: Backlash is the clearance or play between the threads of the worm screw and the teeth of the worm wheel. The pitch of a worm screw influences the amount of backlash present in the system. A finer pitch generally results in lower backlash due to the smaller clearance between the threads and the teeth. In contrast, coarser pitches may have increased backlash, which can negatively impact the system’s accuracy, precision, and responsiveness.
  • Efficiency and Heat Generation: The pitch of a worm screw affects the overall efficiency of the worm gear system. Finer pitches tend to have higher efficiency due to reduced sliding friction between the threads and the teeth. This reduced friction results in less heat generation, contributing to higher overall system efficiency. Coarser pitches, on the other hand, may exhibit increased sliding friction, leading to higher energy losses and heat generation.
  • Manufacturing and Design Considerations: The pitch of a worm screw also influences the manufacturing process and design considerations. Finer pitches generally require more precise machining or grinding processes to achieve the desired thread geometry. Coarser pitches, on the other hand, may offer advantages in terms of ease of manufacturing and reduced sensitivity to manufacturing tolerances. The selection of the optimal pitch depends on factors such as the desired gear ratio, load requirements, desired efficiency, and manufacturing capabilities.

It’s important to note that the pitch of a worm screw is typically specified by the manufacturer and should be chosen carefully based on the specific application requirements. Consulting with experts or engineers familiar with worm gear systems can help in selecting the appropriate pitch to achieve the desired performance and functionality.

worm screw

How do you calculate the gear ratio for a worm screw and gear setup?

In a worm screw and gear setup, the gear ratio is determined by the number of teeth on the worm wheel (gear) and the number of threads on the worm screw. The gear ratio represents the relationship between the rotational speed of the worm screw and the resulting rotational speed of the worm wheel. The formula to calculate the gear ratio is as follows:

Gear Ratio = Number of Teeth on Worm Wheel / Number of Threads on Worm Screw

Here’s a step-by-step process to calculate the gear ratio:

  1. Count the number of teeth on the worm wheel. This can be done by visually inspecting the gear or referring to its specifications.
  2. Count the number of threads on the worm screw. The threads refer to the number of complete turns or helical grooves wrapped around the cylindrical body of the worm screw.
  3. Divide the number of teeth on the worm wheel by the number of threads on the worm screw.
  4. The result of the division is the gear ratio. It represents the number of revolutions of the worm screw required to complete one revolution of the worm wheel.

For example, let’s say the worm wheel has 40 teeth, and the worm screw has 2 threads. Using the formula, we can calculate the gear ratio as follows:

Gear Ratio = 40 teeth / 2 threads = 20

In this case, for every full revolution of the worm screw, the worm wheel will rotate 1/20th of a revolution. This indicates a significant speed reduction, resulting in high torque output at the worm wheel.

It’s important to note that the gear ratio calculated using this formula assumes an ideal scenario without considering factors like friction, efficiency losses, or the pitch diameter of the gears. In practical applications, these factors may affect the actual gear ratio and performance of the worm screw and gear setup.

China best CHINAMFG Rolling Mechanical Ball Screw for Feeding Machine (BSD Series, Lead: 10mm, Shaft: 10mm)  China best CHINAMFG Rolling Mechanical Ball Screw for Feeding Machine (BSD Series, Lead: 10mm, Shaft: 10mm)
editor by Dream 2024-05-07